

Daily variation in net primary production and net calcification in coral reef communities exposed to elevated $p\mathrm{CO}_2$

^{1, 2} Steeve Comeau, ¹Peter J. Edmunds, ^{1,3} Coulson A. Lantz, ¹ Robert C. Carpenter

⁵ ¹Department of Biology, California State University, 18111 Nordhoff Street, Northridge,

CA 91330-8303, USA.

² School of Earth Sciences, Oceans Institute and ARC Centre of Excellence for Coral

Reef Studies, The University of Western Australia, Crawley, Western Australia 6009,

Australia

³Southern Cross University School of Environment, Science, and Engineering, Military Road Lismore NSW 2480 Australia

Correspondence to: Steeve Comeau (steeve.comeau@uwa.edu.au)

Abstract

15

The threat represented by ocean acidification (OA) for coral reef has received considerable attention because of the sensitivity of calcifiers to changing water carbonate chemistry. However most studies have focused on the organismic response of

- 20 calcification to OA, and only a few have addressed community-level effects, or investigated parameters other than calcification, such as photosynthesis. Light (Photosynthetically Active Radiation, PAR) is a driver of biological processes on coral reefs, and the possibility that these processes might be perturbed by OA has important implications for community function. Here we investigate how CO₂ enrichment affects
- the relationships between PAR and community net O_2 production (P_{net}), and between PAR and community net calcification (G_{net}), using experiments on three coral communities constructed to match (i) the back reef of Moorea, French Polynesia, (ii) the fore reef of Moorea, and (iii) the reef flat of Oahu, Hawaii. The results were used to test the hypothesis that OA affects the relationship between P_{net} and G_{net} . For the three
- 30 communities tested, pCO₂ did not affect the P_{net} -PAR relationship, but it affected the intercept of the hyperbolic tangent curve fitting the G_{net} -PAR relationship for both reef communities in Moorea (but not in Oahu). For the three communities, the slopes of the linear relationships between P_{net} and G_{net} were not affected by OA, although the intercepts were depressed by the inhibitory effect of high pCO₂ on G_{net} . Our result
- 35 indicates that OA can modify the balance between net calcification and net photosynthesis of reef communities by depressing community calcification, but without affecting community photosynthesis.

1. Introduction

Ocean acidification (OA), which is caused by the dissolution of atmospheric CO₂
 in surface seawater, leads to profound changes in seawater carbonate chemistry,
 involving an increased concentration of bicarbonate ions and dissolved CO₂, and a
 decrease in concentration of carbonate ions and pH (Feely et al. 2004). The effects of
 these changes on tropical coral reefs are beginning to be understood in detail, with most
 studies reporting a decrease in calcification of scleractinian corals and coralline algae at

reduced seawater pH (Gattuso and Hanson 2011; Kroeker et al. 2013).

To date, studies addressing the effects of OA on coral reefs have been performed mostly at the scale of individual organism, and have focused on calcification as a

- 50 response variable (Schoepf et al. 2013; Comeau et al. 2013; Okazaki et al. 2016), while studies focusing on larger spatial scales (i.e., whole communities) have remained rare, mostly because of technical constraints (e.g., Dove et al. 2013; Comeau et al. 2015, 2016a). The few experiments addressing the effects of OA on intact coral reef communities have confirmed the threat to calcification rates previously reported for
- individual organisms, notably by showing a decreased capacity of communities to maintain positive net calcification under conditions mimicking future ocean in which seawater pH will be depressed 0.15 0.3 units relative to present-day conditions (e.g., Dove et al. 2013; Comeau et al. 2015, 2016a). These community-level studies have focused mostly on the response of calcification to low pH (Dove et al. 2013; Comeau et al. 2013; Comeau et al. 2015, 2016a).
- al. 2015, 2016a) and, in contrast, the effect of increasing pCO_2 on community net O_2

65

production has rarely been investigated. Where this issue has been addressed, community O_2 production has been found to be insensitive to p CO_2 (to ~ 1000 µatm) (Leclerc et al. 2002; Langdon and Atkinson 2005, Dove et al. 2013), while a positive effect of p CO_2 on the net production of photosynthetically fixed organic carbon has been reported during a flume experiment (Langdon and Atkinson 2005).

Investigating the combined response to OA of primary production and calcification of benthic coral reef communities is critical, because increasing dissolved CO₂ and bicarbonate ion concentrations potentially could "fertilize" photosynthesis of

- 70 marine organisms (Connell and Russell 2010; Hepburn et al. 2011; Connell et al. 2013), thereby perturbing ecosystem trophodynamics. A stimulatory effect of OA on photosynthesis could, for calcifying taxa such as corals and coralline algae, support higher rates of calcification by increasing the ease with which the metabolic costs of these events could be met through enhanced respiration fuelled by greater availability of
- 75 carbon substrates (Comeau and Cornwall 2016). However, a stimulatory effect of OA on photosynthesis have not been clearly established for coral reef organisms, and to date, the evidence in support of this possibility is equivocal (e.g., Anthony et al. 2008; Kroeker et al. 2013; Comeau et al. 2016b).
- One reason why studies of the effect of pCO₂ on the relationship between primary production and calcification are technically challenging is that the relationships between light (Photosynthetically Active Radiation, PAR) and both photosynthesis and calcification are non-linear (e.g., Borowitzka 1981; Chalker et al. 1988; Muscatine 1990;

Chisholm 2000). In symbiotic reef corals, the relationships between photosynthesis and PAR, and between calcification and PAR, generally are best fit by a hyperbolic tangent function (Chalker 1981; Marubini et al. 2001), which is characterized by a rapid rise of photosynthesis (or calcification) with initial increases in PAR from darkness, followed by a plateau of response at saturating light, and sometimes a reduction in response at the highest PAR intensity (i.e., photoinhibition [e.g., Brown et al. 1999]). No studies have

90 investigated the effect of pCO₂ enrichment on the mathematical parameters defining the hyperbolic tangent relationship between PAR and photosynthesis (or calcification) for coral reef organisms and communities.

Because calcification of coral reef communities is coupled to photosynthesis on

- timescales of hours-to-days (Gattuso et al. 1999), examination of high frequency variation in the net O_2 production (P_{net})- net calcification (G_{net}) relationships for these communities has the potential to reveal the capacity to respond dynamically to varying conditions (i.e., Jokiel et al. 2014). The relationship between P_{net} and G_{net} for coral reefs is relatively well known at the community level, and generally describes a positive linear
- relationship (Gattuso et al. 1999; Falter et al. 2012). Such a relationship reflects emergent properties arising from the stimulation of G_{net} by P_{net} at the organism scale (i.e., for corals and calcified algae) (Jokiel et al. 2014), most likely because P_{net} can supply the carbon resources necessary as substrates for aerobic respiration (Stambler 2011), modify the intracellular and surrounding seawater chemistry (Marubini et al. 2008; Jokiel et al.
- 105 2014), and provide the building blocks necessary to construct the organic matrix found within coral skeletons (Muscatine et al. 2005). Unfortunately, it is difficult to test the

hypothesis that the G_{net} - P_{net} relationship for reef communities is affected by carbonate chemistry, because the seawater chemistry varies with P_{net} in the natural environment (Jokiel et al. 2014; Shaw et al. 2015). To test for an effect of seawater carbonate

chemistry on the G_{net} - P_{net} relationhip of reef communities, it is therefore necessary to first conduct experiments in a controlled environment to assess how seawater carbonate chemistry alone affects the G_{net} - P_{net} relationship.

The present study tests the hypothesis that the enrichment in seawater pCO_2 due

- to OA will affect the relationships between P_{net} and PAR, and between G_{net} and PAR for intact reef communities fabricated in outdoor flumes (sensu Atkinson et al. 1994). The second hypothesis tested is that the P_{net} - G_{net} relationships would be affected by OA, based on the rationale that community P_{net} and G_{net} would respond in dissimilar ways to high pCO₂. Because the shape of these relationships likely depends on the community
- 120 composition (i.e., the taxa present and their relative abundances [Gattuso et al. 1999]), we used results from three independent experiments to explore variations in the relationships caused by differences in environmental conditions and differences in the taxonomic assemblages composing the communities tested. Data from three experiments conducted in flumes in two locations in the tropical Pacific were combined; one experiment focused
- 125 on a back reef community assembled in Moorea, French Polynesia, during the Austral spring 2013 (Comeau et al. 2015); one experiment focused on a reef flat community assembled in Kaneohe Bay, Oahu, during the winter 2014; and one experiment focused on a fore reef community assembled in Moorea, during the Austral spring 2014 (Comeau et al. 2016a). For the communities analysed in Moorea, the present contribution describes

- in more detailed the results for net calcification, as well as new results for photosynthesis, that originate from experiments that are described in part in previous papers (Comeau et al. 2015, 2016a); the study conducted in Oahu has not been described before. The three communities were incubated in outdoor flumes of similar designs, and were operated under ambient and elevated pCO_2 (~ 400 µatm and ~1300 µatm, respectively). When the
- experiments were conducted, community P_{net} and G_{net} were measured simultaneously.

2. Materials and Methods

2.1 Collection and sample preparation

140

145

This study utilizes results from three experiments conducted between August 2013 and October 2014. The first and third experiments were carried out in Moorea, French Polynesia, at the Richard B. Gump South Pacific Research Station, and the second experiment was conducted in Oahu, Hawaii, on Coconut Island at the Hawaii Institute of Marine Biology.

The first experiment took place in August-October 2013, and focused on a back reef community from 1–2 m depth on the north shore of Moorea (Comeau et al. 2015). This community consisted of massive *Porites* spp. (11% cover), *Porites rus* (6%),

Montipora spp. (3%), Pocillopora spp. (2%), and crustose coralline algae (6%), and the coverage of each taxon in the flume was scaled to represent the community structure measured in this habitat in 2013 (Carpenter 2014; Edmunds 2014). To create benthic communities that were ecologically relevant to the back reef of Moorea (Carpenter 2014;

Edmunds 2014), two-third of the area of the working section of the flume was occupied by sediments collected from the lagoon at 2-m depth using custom made sediment boxes $(0.4 \times 0.3 \text{ m in area and } 0.3 \text{ m deep}).$

The second experiment was carried out in Oahu in January-February 2014 and focused on a benthic community similar to that found at 1-2 m depth on the Kaneohe Bay

- barrier reef flat in 2013. This community consisted of *Porites compressa* (7% cover), *Montipora capitata* (12%), massive *Porites* spp. (3%), and *Pocillopora damicornis* (2%), and the crustose coralline alga *Porolithon onkodes* (4%) (Jokiel et al. 2015). As described above for experiment 1, sediments were inserted into the floor of the flume to recreate ecologically relevant communities. Since the flumes in Oahu (as designed and
- 165 utilized by M Atkinson (e.g., Atkinson et al. 1994)) were not designed to include sediments, a custom-made sediment box was inserted into the floor of the flumes to provide an area occupying two-thirds of the floor of the working section of the flume with sediment to a depth of \sim 5-8 cm.
- The third experiment was carried out from August to October, 2014 in Moorea,
 and focused on outer reef benthic communities prepared from specimens collected from ~
 15–17-m depth (Comeau et al. 2016a). This community consisted of *Pocillopora* spp.
 (11% cover), massive *Porites* spp. (8%), and *Acropora* spp. (8%), and the crustose
 coralline alga *Porolithon onkodes* (5%), and the coverage of each taxon was scaled in the
 flumes to match community structure recorded in this habitat (at the same depth) in 2006
- (Carpenter 2014; Edmunds 2014). Because the benthos on the fore reef of Moorea

consisted mostly of reef pavement in 2006 (i.e., cemented calcium carbonate substratum covered by algal turf and coralline algae (Carpenter 2014; Edmunds 2014), 55% of the floor of the flume was covered by $\sim 20 \times 20 \times 5$ cm pieces of reef pavement collected

180 from ~15-m depth to match the % cover of the benthic community. Sediments were not included in this experiment, as they are not common on the fore reef at the investigated depth.

In Moorea, the two experiments were performed in four outdoor flumes consisting
of a working section of 5.0 × 0.3 × 0.3 m (as in Comeau et al. 2015) in which water was
re-circulated at a constant speed of 10 ± 0.5 cm s⁻¹ (mean ± SE; Experiment 1) or 8 ± 0.5 cm s⁻¹ (Experiment 3) that represented the mean in situ flow speed over the year
measured in the two habitats (Washburn 2014; Comeau et al. 2016). Two flumes were
maintained at ambient pCO₂ (~ 400 µatm), and two at elevated pCO₂ (~1200–1300 µatm,
see below). Fresh sand-filtered seawater (nominal pore size of ~ 100 µm) was dispensed
continuously into the flumes at 5 L min⁻¹, and the experiments lasted eight (Experiment

1) or seven weeks (Experiments 3).

In Oahu, the benthic community was constructed in two outdoor flumes, one with a working section of $9 \times 0.6 \times 0.3$ m, and one with a working section of $4 \times 0.4 \times 0.4$ m; one of these flumes was maintained at ambient pCO₂ and one at elevated pCO₂. To address the confounding effect of flumes in this design (i.e., the flumes were allocated to one of two treatments and the flumes were not of an identical design), the first experiment ended after three weeks, the pCO₂ treatments were switched between flumes,

- and new communities (with the same taxon composition including sediment) were placed in the two flumes for a second trial of the same experiment lasting 3 weeks. Fresh sandfiltered seawater was dispensed continuously into both flumes (at 5-10 L min⁻¹), and a flow speed of 10 cm s⁻¹, similar to that employed in the earlier trial with the back reef communities of Moorea, was maintained using electric trolling motors (Minnkota Riptide
- 205 55, Minnkota, USA).

The three experiments were performed outdoors under natural sunlight that was attenuated using shade cloth to maintain PAR values similar to ambient PAR recorded in situ in each habitat. In Experiment 1 and 2, the maximum PAR was set at $\sim 1000 \mu$ mol

- quanta m⁻² s⁻¹ to represent light levels at ~ 1–2m depth in the back reef (Carpenter et al. 2016), and in Experiment 3, maximum PAR was set at ~ 600 μ mol quanta m⁻² s⁻¹ to mimic light levels recorded at 17-m depth on the fore reef of Moorea around noon on a cloudless day (Carpenter et al. 2016). For Experiment 3 (with an outer reef community from deeper water), blue acetate filters (Lee Filters #183 Moonlight Blue) were placed
- over the flumes to filter ambient sunlight in the 600-800 nm range to approximate the light spectrum found at 17-m depth (Comeau et al. 2016a). Temperature in all flumes was maintained at ambient seawater temperature when the experiments were conducted, which corresponded to ~ 27 °C in Experiment 1 and 3 (both conducted during Austral spring) and ~ 24 °C in Experiment 2 (conducted in winter).

220

2.2 Carbonate chemistry manipulations and measurements

For the three experiments, pCO_2 levels were chosen to match ambient pCO_2 (~ 400 uatm) and the pCO_2 expected in the atmosphere by the end of the present century

- under a pessimistic scenario of further anthropogenic activity (Representative Concentration Pathway 8.5, ~1300 μatm, Moss et al., 2010). pCO₂ in the flumes was controlled using pH controllers (Aquacontroller, Neptune systems, USA) that controlled the delivery of either pure CO₂ or CO₂-free air into the seawater. To match the natural diel variation in seawater pH in shallow back reef communities (Hofmann et al., 2011;
- 230 Comeau et al., 2014a), in Experiment 1 and 2, seawater pH was maintained 0.1 unit lower at night (from 18:00 to 6:00) than during the day. Diel variation in pH was not applied during Experiment 3, because seawater pH varies < 0.1 between day and night on the fore reef of Moorea (S. Comeau unpublished data).
- For the three experiments, pH on the total scale (pH_T) was measured daily using a portable pH meter (Orion 3-stars, Thermo-Scientific, USA) fitted with a DG 115-SC pH probe (Mettler Toledo, Switzerland) calibrated every other day with Tris/HCl buffers (Dickson et al., 2007). pH_T also was measured every 2 weeks spectrophotometrically using m-cresol dye (Dickson et al., 2007). Mean values of pH_T measured
- spectrophotometrically and using a pH electrode differed < 0.02 pH units. Total alkalinity $(A_{\rm T})$ was measured using open-cell potentiometric titrations (Dickson et al., 2007) on 50-mL samples of seawater collected every 2-3 d. Accuracy of $A_{\rm T}$ measurements was checked by titrating certified reference materials provided by A. G. Dickson (batch 122 and 140) that yielded $A_{\rm T}$ values within ~ 4 µmol kg⁻¹ of the nominal value. Parameters of

the carbonate system in seawater were determined with the R package seacarb (Gattuso et al., 2015) using measured values of pH_T , A_T , temperature, and salinity.

2.3 Net calcification and primary production measurements

Net community calcification (G_{net}) in the flumes was measured using the total alkalinity anomaly method (Chisholm and Gattuso 1991; Schoepf et al. 2016), and net community primary production (P_{net}) was measured using oxygen sensors (TROLL 9500, In-Situ) that measured the O₂ concentration at 60-second intervals. Measurements of changes in dissolved inorganic carbon (DIC) were not meaningful with our experimentaldesign because DIC was held constant by adding pure CO₂ during the incubations to

For the three experiments, community metabolism was measured every 7 d using single 24-h incubations during which the addition of seawater to the flumes was stopped, and the flumes were operated in a closed circuit mode. During these incubations,

- seawater samples for the determination of $A_{\rm T}$ were taken every 3 h during the day, and every 6 h at night, to estimate G_{net} , while O₂ was constantly monitored. Since only two O₂ sensors were available, and experiments were conducted in four flumes in Moorea, P_{net} was measured for each incubation in one ambient and one elevated pCO₂ flumes that were picked randomly. In Oahu, one O₂ sensor was used in each flume during the
- 265 incubations. Acrylic covers placed on top of the flumes limited gas exchange with the atmosphere but did not prevent it. However, gas exchange, which was similar between treatments, was estimated (using the methods of Langdon and Atkinson [2005]) to be

²⁵⁵ maintain pCO_2 at target values.

280

minimal (i.e. < 5%) and, therefore, was not taken into account in the present study. To maintain $A_{\rm T}$, nutrient concentrations, and pO₂ at values close to ambient seawater in the

270 sampled habitats, ~ 50% of the flume volume was replaced every 3 h during the day, and every 6 h at night (i.e., at 6:00, 9:00, 12:00, 15:00, 18:00, and 00:00). Light was monitored constantly during the incubations using cosine-corrected PAR sensors (Odyssey, Dataflow Systems Pty Ltd, Christchurch, New Zealand).

275 2.4 Calculations and statistical analysis

 P_{net} was estimated hourly by calculating the change in O₂ during the incubations, except for the hours during which the seawater was refreshed (6:00, 9:00, 12:00, 15:00, 18:00, and 00:00 hrs). G_{net} was estimated at 3 h intervals during the day and 6 h intervals at night by collecting $A_{\rm T}$ samples at the beginning (after seawater refreshing) and at the end of each incubation (before adding fresh seawater).

Because there were no significant differences in calcification between flumes for each treatment (Comeau et al. 2015, 2016a), G_{net} was pooled among replicate flumes in each treatment. P_{net} was measured in Moorea in only one flume per treatment at a time,

and it was assumed that the measurements represented the average response to the conditions experienced in each treatment. Individual measurements of G_{net} and P_{net} in Oahu were considered replicates.

An Akaike Information Criterion (AIC) approach was used to determine if a linear, logarithmic, or hyperbolic tangent functions best described the functional

relationships between P_{net} and PAR, and between G_{net} and PAR, for each community (see details in Comeau et al. 2013). A linear relationship was fit to explore a "proportional effect" model for increasing PAR. A logarithmic function and a hyperbolic tangent function that are commonly used to describe the relationship between P_{net} and PAR for reef corals (Chalker 1981; Marubini et al. 2001), also were fit to the data in cases where

295 reef corals (Chalker 1981; Marubini et al. 2001), also were fit to the data in cases where photosynthesis (or calcification) initially rapidly increased with PAR, then approached an asymptote at saturating PAR.

The hyperbolic tangent function between PAR and P_{net} in the light corresponded 300 to:

$$P_{net} = C_0 + P_{net max} \tanh \frac{(\alpha I)}{P_{net max}}$$

where $P_{net max}$ is the maximum photosynthetic rate, *I* is the PAR, α is the slope of the initial portion of the P_{net} versus *I* relationship, and C_0 is the intercept.

Similarly, the hyperbolic tangent function for the relationship between PAR and G_{net} in the light was:

$$G_{net} = C_0 + G_{net max} \tanh \frac{(\alpha I)}{G_{net max}}$$

where $G_{net max}$ is the maximum calcification rate, *I* is the PAR, α is the slope of the initial portion of the G_{net} versus *I* relationship, and C_0 is the intercept.

The best fits of the functions (least squares) were determined using the function 310 nls in R, and t-tests were used to compare the curve parameters between pCO₂ treatments.

To test the hypothesis that P_{net} and G_{net} were associated, mean P_{net} corresponding to the G_{net} determination intervals (3 h periods during the day and 6 h at night) were calculated, and the relationship between P_{net} and G_{net} was investigated using a correlation approach (sensu Gattuso et al. 1999). When the linear associations between G_{net} on P_{net} were significant, analyses of covariance (ANCOVA), with P_{net} as the covariate, were used to test the effects of pCO₂ (a fixed effect) on the P_{net} - G_{net} relationship for each experiment. All analyses were performed using R software (R Foundation for Statistical

Computing). In this design, both P_{net} and G_{net} are random variables for which a test of

association is best accomplished with correlation. Evaluating the slope and intercept is problematic as it is not appropriate to use Model I (least squares) approaches for the purpose of describing the functional relationship between two random variables. In the present case, we report Model I slopes because we are interested in the capacity to predict G_{net} from P_{net} and because Model I slopes are integral to the ANCOVA approach.

325

315

3. Results

Carbonate chemistry was tightly controlled during the three experiments, with mean pCO₂ maintained at 453 ± 30 , 460 ± 23 , and 400 ± 14 µatm in the ambient treatments, and 1317 ± 50 , 1233 ± 76 , and 1176 ± 37 µatm in the elevated pCO₂

treatments during Experiments 1, 2, and 3, respectively (all \pm SE, n = 42–56). In all experiments and both treatments, aragonite saturation states (Ω_{arag}) was ~ 3.52, 2.59, and 3.71 in the ambient treatments, and 1.64, 1.36, and 1.75 in the elevated pCO₂ treatments during Experiments 1, 2, and 3, respectively (Table 1). Ω_{arag} was lower during

Experiment 2 in Oahu compared to Experiments 1 and 3 in Moorea because of naturally 335 lower $A_{\rm T}$ (~ 2160 µmol kg⁻¹) and temperature (~24°C) in this location (cf in Moorea where $A_{\rm T}$ is ~2340 µmol kg⁻¹ at 27°C).

For the three experiments, benthic community structure was not measured during these short experiments, but we assume that changes were minor as there was no coral

340 mortality and planar growth would have been trivial over several weeks.

3.1 Relationships of P_{net} and G_{net} with PAR

AIC analyses justified the use of a hyperbolic tangent function (versus linear or logarithmic functions) to fit the relationship between P_{net} and PAR during the day for the three experiments under the two pCO₂ conditions (Fig. 1A, B, and C). For the back reef community of Moorea, the back reef community of Oahu, and the fore reef community of Moorea, there was no effect of pCO₂ on any of the parameters of the relationship between P_{net} and PAR (Table 2).

350

355

AIC tests also confirmed that the relationships of G_{net} with PAR could be fit with a hyperbolic tangent function for the three experiments under the two pCO₂ conditions tested (Fig. 2A, B, and C). For the Moorea back reef community, there was no difference in maximum calcification ($G_{net max}$), and slope of the initial portion of the relationship (α) between pCO₂ treatments (Table 2). However, pCO₂ affected the intercepts (C_0 , p = 0. 046), with C_0 at ambient pCO₂ (1.26 mmol m⁻² h⁻¹) greater than C_0 at elevated pCO₂ (-

360

0.52 mmol m⁻² h⁻¹). The relationship of G_{net} with PAR for the back reef communities in Oahu was not statistically affected by pCO₂ (Table 2). For the fore reef community of Moorea, $G_{net max}$ and α did not differ between treatments, but C_0 was higher (2.77 mmol O₂ m⁻² h⁻¹) at ambient versus elevated pCO₂ (0.58 mmol O₂ m⁻² h⁻¹) (Table 2).

3.2 Relationships between P_{net} and G_{net}

For the back reef communities of Moorea, the relationship between P_{net} and G_{net} were significantly and positively correlated (p < 0.001 under ambient and elevated pCO₂) with slopes of 0.17 ± 0.03 mmol CaCO₃ mmol O₂⁻¹ under ambient pCO₂, and 0.18 ± 0.03 mmol CaCO₃ mmol O₂⁻¹ (both ± SE, n = 48) under elevated pCO₂ (Fig. 3A). There was no difference between treatments in slopes (ANCOVA, p = 0.749, Table 3), but elevations were 61% greater under ambient versus elevated pCO₂ (p < 0.001, Table 3).

370 G_{net} and P_{net} for the back reef communities of Oahu also were positively correlated (p < 0.001 under both ambient and elevated pCO₂) and their relationships exhibited slopes of 0.14 ± 0.02 mmol CaCO₃ mmol O₂⁻¹ under ambient pCO₂, and 0.17 ± 0.02 mmol CaCO₃ mmol O₂⁻¹ (both ± SE, n = 36) under elevated pCO₂ (Fig. 3B). There was no difference between treatments in slopes (ANCOVA, p = 0.286, Table 3), but the elevations were 32% greater under ambient versus elevated pCO₂ (p < 0.001).

For the fore reef community of Moorea, the relationships between G_{net} and P_{net} were significant under ambient and elevated pCO₂ (p < 0.001) and had respective slopes of 0.27 ± 0.05 mmol CaCO₃ mmol O₂⁻¹, and 0.30 ± 0.06 mmol CaCO₃ mmol O₂⁻¹ (both ±

SE, n = 28). For the back reef communities, there were no difference of the slopes between G_{net} and P_{net} between treatments (ANCOVA, p = 0.623, Table 3), but elevations were 48% greater under elevated versus ambient pCO₂ (p = 0.002).

4. Discussion

385

By testing the response of three coral reef communities to OA under natural PAR, our study demonstrates that the relationships between P_{net} and PAR and G_{net} and PAR for back reef and outer reef communities are not affected by pCO₂. Our results also demonstrate that the slope of the relationship between P_{net} and G_{net} was unaffected by

increasing pCO₂, in contrast the intercepts were more elevated in the ambient treatments. Such results were caused by a constant effect of OA on G_{net} for the range of P_{net} values measured in the three communities.

For the three assembled communities tested, pCO₂ did not affect the functional

- relationship between PAR and P_{net} as modelled using a hyperbolic tangent function. This result suggests that for the organisms composing the three communities investigated, the additional quantities of bicarbonate and dissolved CO₂ available under OA conditions did not enhance photosynthesis across the range of light intensities and community structures tested. However, as our results come from experiments completed in a single season, we
- 400 cannot be sure whether the results are consistent throughout the year, as seasonal variations in community and organismic P_{net} and G_{net} are common on coral reefs (e.g., Falter et al. 2012). Whether increasing pCO₂ has beneficial consequences for rates of

photosynthesis of marine organisms is equivocal (Connell and Russell 2010; Britton et al. 2016) and, indeed, the absence of an effect of pCO_2 on photosynthesis may have

- 405 important biological meaning (e.g., Kroeker et al. 2013). For instance, such an outcome could reflect the presence of diverse carbon concentrating mechanisms (CCM), which allow organisms to actively concentrate CO₂ at the site of Rubisco activity by actively transporting HCO₃⁻ across internal membranes (Giardano et al. 2005; Raven et al. 2014). Increases in concentration of dissolved CO₂ in seawater that occur as a result of OA
- 410 (Feely et al. 2004) could have beneficial consequences for photosynthetic rates of species that currently are DIC limited (Diaz-Pulido et al. 2016), because these organisms often rely on inefficient and energetically costly CCMs to access CO₂ (Raven et al. 2014).

The present study, as well as previous studies of both coral reef organisms (corals and calcified algae) (Schneider & Erez 2006; Comeau et al. 2016b), and coral reef communities (Leclercq et al. 2002; Langdon et al 2003; Dove et al. 2013), showed no change in P_{net} , measured by O₂ changes, in response to OA arising from pCO₂ values as high as 2000 µatm. Stimulatory effects of pCO₂ on P_{net} probably were not detected in our communities (i.e., where coral cover ranged form 22–27%), because such effects are

- 420 likely to be minimal for endosymbiotic *Symbiodinium* in corals that possess a CCM (Mackey et al. 2015) and, moreover, are able to exploit some of the host respiratory CO₂ as an alternative DIC source (Stambler 2011). Beneficial effects of high pCO₂ on community carbon production, but not oxygen production, for shallow water coral reefs have been reported by Langdon & Atkinson (2005), who found a 20–50% increase in
- 425 carbon production of coral assemblages composed of *Porites compressa* and *Montipora*

capitata. This result led to the hypothesis that increasing CO₂ causes a decrease in the photosynthetic quotient of corals, which could be a product of the metabolism of the coral host if it favors the production of carbohydrates over proteins and lipids (Langdon & Atkinson 2005). While this hypothesis is appealing, it was not possible to test in the present study because P_{net} was determined through measurements of O₂ (see Material and

430 present study because P_{net} was determined through measurements of O₂ (see Material and Methods).

In our three experiments, maximal community G_{net} was coincident with the highest PAR. Similar to P_{net} , the relationships of G_{net} with PAR at the two pCO₂ levels

- 435 were best-fit by a hyperbolic tangent function. The lack of changes in the parameters of these relationships as a result of the treatment conditions demonstrated that pCO_2 and light did not have interactive effects on G_{net} (Table 2). Only the elevations of the hyperbolic functions for the two habitats in Moorea were affected by high pCO_2 , and in this case their reduction relative to ambient pCO_2 demonstrates that G_{net} consistently was
- 440 lower, regardless of PAR, at high pCO₂. Comparative data on the effect of PAR on the response of community calcification to pCO₂ are currently not available, but the few studies of these effects that have been conducted at the organism scale report equivocal results (Marubini et al. 2001; Comeau et al. 2013; Dufault et al. 2013; Sugget et al. 2013; Comeau et al. 2014b; Enochs et al. 2014).

445

The consistently lower G_{net} in the high pCO₂ treatments for the three experiments could have resulted from either a decrease in gross calcification, an increase in dissolution, or a combination of both. The constant offset (i.e., difference in elevation of

the response) between G_{net} under ambient and high pCO₂ at any given PAR suggests the effect cannot be accounted for solely by changes in gross calcification (G_{gross}). Indeed, if only G_{gross} was affected, a proportional effect G_{net} would be expected, with the reduction of G_{net} associated with high pCO₂ varying with G_{gross} and therefore PAR. In contrast, if dissolution and bioerosion, which are mostly chemically and mechanically driven (Andersson and Gledhill 2013), were responsible for the reduced G_{net} at high pCO₂, it is

455 likely that PAR would have only a small influence in G_{net} . Thus, it is likely that increasing dissolution/bierosion in the high pCO₂ treatment caused most of the observed decreases in G_{net} .

Although the two coral reef communities studied in Moorea differed in

- substratum composition (i.e., sand in the back reef versus pavement in the outer reef), community structure, and the quality and quantity of light applied (i.e., blue-biased at depth and a 40% reduction at 17-m versus 2-m depth), both communities exhibited a 50-60% decline in G_{net} at 1300 µatm pCO₂. In contrast, mean G_{net} for the Oahu back reef community was less affected by pCO₂ than for the communities of Moorea. The reduced
- sensitivity of G_{net} to ~ 1200 µatm pCO₂ for back reef communities in Oahu may reflect different sediment composition and legacy effects associated with environmental conditions in the bay from which the organisms and sediment were collected. Critically, the organisms for the Oahu experiment were collected from Kaneohe Bay where seawater pCO₂ (up to ~450-500 µatm) is higher than current atmospheric levels (~400 µatm), and
- 470 there are strong diurnal cycles in pCO₂, and rapid changes in pCO₂ during storm events (Fagan and Mackenzie 2007; Drupp et al. 2011). These conditions potentially could have

created the opportunity for physiological acclimatization that might reduce their sensitivity to high pCO_2 in the experimental trials.

- The relationship between community P_{net} and G_{net} is used commonly to evaluate the "state" of a coral reef (Gattuso et al. 1999; Lantz et al. 2014), with coral reefs dominated by high coral cover and low cover of macroalgae characterized by elevated slopes of the P_{net} - G_{net} relationship. In the present study, the slopes of the relationships between P_{net} and G_{net} in the ambient treatment were between 0.14 (Oahu) (this and all
- following slope values have units of mmol CaCO₃ mmol O₂⁻¹) and 0.27 (Moorea fore reef). In Moorea, the slopes were higher for the fore reef (0.27 and 0.30) versus the back reef (0.17 and 0.18) community, which demonstrated that G_{net} was more sensitive to changes in P_{net} in fore reef communities, probably because of a higher calcifier cover. The slopes of the P_{net} - G_{net} relationships for the communities tested are within the range
- estimated from in situ "reef scale" measurements, which indicate a mean value of 0.22 based on 52 reefs (Gattuso et al. 1999). More recently, Shaw et al. (2012) reported a P_{net} - G_{net} slope of 0.24 for the reef flat of Lady Elliot Island, Australia, and a slope of 0.14 was reported for Ningaloo reef, Australia (Falter et al. 2012). The consistency between the slopes reported herein and values determined in situ (e.g., Shaw et al. 2012, Gattuso et al.
- 490 1999) suggest that our constructed communities, and the conditions to which they were exposed, reproduced conditions found in situ on coral reefs. This outcome lends support to the inferences we are able to make regarding the response of reef communities to elevated pCO_2 for which currently there is no in situ data.

495 Our results are consistent with the hypothesis that OA will affect the relationship between community P_{net} and G_{net} (sensu Gattuso et al. 1999) because elevations of the P_{net} - G_{net} relationships varied between treatments and were greater under ambient pCO₂. The absence of changes in slopes as a function of pCO₂ probably was due to the lack of a pCO₂ effect on P_{net} , and the lack of a PAR-pCO₂ interactive effect on P_{net} and G_{net} .

- Furthermore, the community composition remained the same in the ambient and elevated pCO_2 conditions, with no mortality or loss of benthic cover of living organisms during the course of the experiment, which could potentially have modified the community P_{net} G_{net} relationship (Lantz et al. 2014; Shaw et al. 2015) due to taxon-specific P_{net} G_{net} relationships (C.A. Lantz unpubl.). Thus, this result indicates that elevated CO₂ alone
- 505 (e.g., without considering warming) can modify the balance between calcification and photosynthesis at the scale of a whole reef, because of a decrease in coral reef community calcification while photosynthesis remains constant.

Acknowledgements

We thank RD Gates and HM Putnam for access to the infrastructure of HIMB and

laboratory assistance in Hawaii. This study was funded by the National Science
Foundation (OCE 10-41270 and 14-15268) and the Moorea Coral Reef LTER (OCE 04-17413 and 10-26852). This is contribution number 235 of the CSUN Marine Biology
Program. S. Comeau was supported by ARC (Discovery Early Career Researcher Award; DE160100668) during the writing of the manuscript.

515

References

- Albright R., Langdon C., and Anthony K. R.: Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, central Great Barrier Reef.
 Biogeosciences, 10, 6747–6758, 2013.
- 520 Anthony K. R., Kline D. I., Diaz-Pulido G., Dove S., and Hoegh-Guldberg O.: Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl. Acad. Sci., 105,17442–17446, 2008.
 - Andersson, A. J., and Gledhill, D.: Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Annu. Rev. Mar. Sci., 5, 321–

Atkinson, M. J., Kotler E., and Newton, P.: Effects of water velocity on respiration,
calcification, and ammonium uptake of a *Porites compressa* community. Pacific Sci.,
48, 296-303, 1994.

^{525 348, 2013.}

Barkley, H. C., Cohen, A. L., Golbuu, Y., Starczak, V. R., DeCarlo, T. M., and

530 Shamberger, K. E. F.: Changes in coral reef communities across a natural gradient in seawater pH. Science Advances, 1: e1500328, doi:10.1126/sciadv.1500328, 2015.

Borowitzka, M. A.: Photosynthesis and calcification in the articulated coralline red algae *Amphiroa anceps* and *A. foliacea*. Mar. Biol., 62, 17–23, 1981.

Britton, D., Cornwall, C. E., Revill, A. T., Hurd, C. L., and Johnson, C. R.: Ocean

- acidification reverses the positive effects of seawater pH fluctuations on growth and photosynthesis of the habitat-forming kelp, *Ecklonia radiata*. Scientific Reports, 6, 26036, doi:10.1038/srep26036, 2016.
 - Brown, B. E., Ambarsari, I., Warner, M. E., Fitt, W. K., Dunne, R. P., Gibb, S. W., and Cummings, D. G.: Diurnal changes in photochemical efficiency and xanthophyll
- 540 concentrations in shallow water reef corals : evidence for photoinhibition and photoprotection. Coral Reefs, 18, 99–105, 1999.
 - Carpenter, R. C. of Moorea Coral Reef LTER.: MCR LTER: Coral Reef: Long-term population and community dynamics: benthic algae and other community components, ongoing since 2005. knb-lter-mcr.8.27. Available at: http://metacat.lter-
- net.edu/knb/metacat/knb-lter-mcr.8.27/lter, 2014.
 Carpenter, R. C. of Moorea Coral Reef LTER.: MCR LTER: Coral Reef: Benthic
 Photosynthetically Active Radiation (PAR), ongoing since 2009. knb-lter-mcr.4005.8
 doi:10.6073/pasta/ea06e6d53df8b1cdf7c1d50d025b77fd, 2016.
- Chalker, B. E.: Simulating light-saturation curves for photosynthesis and calcification by
 reef-building corals. Mar. Biol., 63, 135–141, 1981.

Chalker, B. E., Barnes, D. J., Dunlap, W. C., and Jokiel, P. L.: Light and reef-building corals. Interdisciplinary Sci. Rev., 13, 222–237, 1988.

Chisholm, J. R. M., and Gattuso, J.-P.: Validation of the alkalinity anomaly technique for investigating calcification of photosynthesis in coral reef communities. Limnol.

Chisholm, J. R. M.: Calcification by crustose coralline algae on the northern Great Barrier Reef, Australia. Limnol. Oceanogr., 45, 1476–1484, 2000.

Comeau S., and Cornwall, C. E.: Contrasting effects of ocean acidification on coral reef "animal forests" versus seaweed "kelp forests". *In*: Marine Animal Forests, Springer,

560 2016.

Comeau, S., Carpenter, R. C., and Edmunds, P. J.: Effects of pCO₂ on photosynthesis and respiration of tropical scleractinian corals and calcified algae. ICES J.Mar. Sci., fsv267, doi:10.1093/icesjms/fsv267, 2016b.

Comeau, S., Carpenter, R. C., Lantz, C. A., and Edmunds, P. J.: Ocean acidification

- accelerates dissolution of experimental coral reef communities. Biogeosciences, 12,
 365–372, 2015.
 - Comeau, S., Lantz, C. A., Edmunds, P. J., and Carpenter, R. C.: Framework of barrier reefs threatened by ocean acidification. Glob. Change Biol., 22, 1225–1234, 2016a.

Comeau, S., Edmunds, P. J., Spindel, N. B., and Carpenter, R. C.: Diel pCO2 oscillations

modulate the response of the coral *Acropora hyacinthus* to ocean acidification. Mar.Ecol. Progr. Seri., 501, 99–111, 2014.

⁵⁵⁵ Oceanogr., 36: 1232–1239, 1991.

Connell, S. D., and Russell, B. D.: The direct effects of increasing CO₂ and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. P.
Roy. Soc. B, 277, 1409-1415, 2010.

575 Connell, S. D., Kroeker, K. J., Fabricius, K. E., Kline, D. I., and Russell, B. D.: The other ocean acidification problem: CO₂ as a resource among competitors for ecosystem dominance. Philo. Trans. Roy. Soc. B, 368, 20120442, doi:10.1098/rstb.2012.0442, 2013.

Diaz-Pulido, G., Cornwall, C., Gartrell, P., Hurd, C., and Tran, D. V.: Strategies of

580 dissolved inorganic carbon use in macroalgae across a gradient of terrestrial influence: implications for the Great Barrier Reef in the context of ocean acidification. Coral Reefs, 35, 1327, doi:10.1007/s00338-016-1481-5, 2016.

Dickson A. G., Sabine, C. L., and Christian, J. R.: Guide to best practices for ocean CO₂ measurements. PICES Special Publication 3, pp 191, 2007.

- 585 Dove, S. G., Kline, D. I., Pantos, O., Angly, F. E., Tyson, G. W., and Hoegh-Guldberg, O.: Future reef decalcification under a business-as-usual CO₂ emission scenario. Proc. Natl. Acad. Sci., 110, 15342–15347, 2013.
 - Drupp, P., DeCarlo, E. H., Mackenzie, F. T., Bienfang, P., and Sabine, C. L.: Nutrient inputs, phytoplankton response, and CO₂ variations in a semi-enclosed subtropical
- embayment, Kaneohe Bay, Hawaii. Aquatic Geochem., 17, 473–498, 2011.
 - Dufault, A. M., Ninokawa, A., Bramanti, L., Cumbo, V. R., Fan, T.-Y., and Edmunds, P.J.: The role of light in mediating the effects of ocean acidification on coral calcification.J. Exp. Biol., 216, 1570–1577, 2013.

Edmunds, P. J. of Moorea Coral Reef LTER .: MCR LTER: Coral Reef: Long-term

595 population and community dynamics: corals. knb-lter-mcr.4.31. Available at: http://metacat.lternet.edu/knb/metacat/knb-lter-mcr.4.31/lter, 2014.

Enochs, I. C., Manzello, D. P., Carlton, R., Schopmeyer, S., Van Hooidonk, R., and Lirman, D.: Effects of light and elevated pCO₂ on the growth and photochemical efficiency of *Acropora cervicornis*. Coral Reefs, 33, 477–485, 2014.

- 600 Fabricius, K. E., Langdon, C., Uthicke, S., Humphrey, C., Noonan, S., De'ath, G. et al.: Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Clim. Change, 1, 165–169, 2011.
 - Fagan K. E., and Mackenzie, F. T.: Air sea CO₂ exchange in a subtropical estuarine-coral reef system, Kaneohe Bay, Oahu, Hawaii. Mar. Chem., 106, 174 191, 2007.
- 605 Falter, J. L., Lowe, R. J., Atkinson, M. J., and Cuet, P.: Seasonal coupling and de-coupling of net calcification rates from coral reef metabolism and carbonate chemistry at Ningaloo Reef, Western Australia. J. Geophys. Res., 117, C05003, doi:10.1029/2011JC007268, 2012.
 - Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., and Millero, F.
- J.: Impact of anthropogenic CO₂ on the CaCO₃ system in the oceans. Science, 305, 362–366, 2004.
 - Gattuso, J.-P., and Hansson, L.: Ocean acidification: background and history. Ocean acidification, 2011.
 - Gattuso, J.-P., Allemand, D., and Frankignoulle, M.: Photosynthesis and calcification at
- 615 cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Amer. Zool., 39, 160–183, 1999.

Gattuso, J.-P., Epitalon, J.-M., and Lavigne, H.: seacarb: Seawater carbonate chemistry. R package version 3.0.6. http://CRAN.R-project.org/package=seacarb, 2015.

Giordano, M., Beardall, J., and Raven, J. A.: CO2 concentrating mechanism in algae:

- mechanisms, environmental modulation, and evolution. Annual Rev. Plant Biol., 56, 99–131, 2005.
 - Hepburn, C. D., Pritchard, D. W., Cornwall, C. E., McLeod, R. J., Beardall, J., Raven, J. A., and Hurd, C. L.: Diversity of carbon use strategies in a kelp forest community: implications for a high CO₂ ocean. Global Change Biol., 17, 2488–2497, 2011.
- 625 Hofmann, G. E., Smith, J. E., Johnson, K. S., Send, U., Levin, L. A., Micheli, F., et al.: High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS One, 6, e28983, doi:10.1371/journal.pone.0028983, 2011.
 - Jokiel, P. L., Jury, C. P., and Ku'ulei, S. R.: Coral-algae metabolism and diurnal changes in the CO₂-carbonate system of bulk sea water. PeerJ, 2, e378, doi: 10.7717/peerj.378,

630 **2014**.

Jokiel, P. L., Rodgers, K. S., Brown, E. K., Kenyon, J. C., Aeby, G., Smith, W. R., and Farrell, F.: Comparison of methods used to estimate coral cover in the Hawaiian Islands. PeerJ, 3,e954, doi.org/10.7717/peerj.954, 2015.

Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S. et al.:

- 635 Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biol., 19, 1884–1896, 2013.
 - Langdon, C., and Atkinson, M. J.: Effect of elevated pCO₂ on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance

and nutrient enrichment. J. Geophys. Res., 110, C09S07, doi:10.1029/2004JC002576,

- 640 2005.
 - Langdon, C., Broecker, W. S., Hammond, D. E., Glenn, E., Fitzsimmons, K., Nelson, S.G., et al.: Effect of elevated CO₂ on the community metabolism of an experimental coral reef. Global Biogeochem. Cycles, 17, 1011, doi:10.1029/2002GB001941, 2003.

Lantz, C. A., Atkinson, M. J., Winn, C. W., and Kahng, S. E.: Dissolved inorganic carbon

- and total alkalinity of a Hawaiian fringing reef: chemical techniques for monitoring the effects of ocean acidification on coral reefs. Coral Reefs, 33, 105–115, 2014.
 - Leclercq, N., Gattuso, J.-P., and Jaubert, J.: Primary production, respiration, and calcification of a coral reef mesocosm under increased CO₂ partial pressure. Limnol. Oceanogr., 47, 558–564, 2002.
- 650 Mackey, K.R.M., Morris, J.J., Morel, F.M.M., and Kranz, S.A.: Response of photosynthesis to ocean acidification. Oceanogr., 28,74–91, 2015.
 - Marubini, F., Barnett, H., Langdon, C., and Atkinson, M. J.: Dependence of calcification on light and carbonate ion concentration for the hermatypic coral *Porites compressa*.
 Mar. Ecol. Prog. Ser., 220, 153–162, 2001.
- 655 Marubini, F., Ferrier-Pagès, C., Furla, P., and Allemand, D.: Coral calcification responds to seawater acidification: a working hypothesis towards a physiological mechanism. Coral Reefs, 27, 491–499, 2008.
 - Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van Vuuren, D. P. et al.: The next generation of scenarios for climate change research and
- assessment. Nature, 463, 747–756, 2010.

Muscatine, L.: The role of symbiotic algae in carbon and energy flux in reef corals, in: Dubinsky, Z. (Ed), Coral Reefs, Ecosystems of the World, Elsevier, Amsterdam, pp. 75-87, 1990.

Muscatine, L., Goiran, C., Land, L., Jaubert, J., Cuif, J.-P., and Allemand, D.: Stable

- isotopes (δ^{13} C and δ^{15} N) of organic matrix from coral skeleton. P. Natl Acad. Sci., 102, 1525–1530, 2005.
 - Okazaki, R. R., Towle, E. K., van Hooidonk, R., Mor, C., Winter, R. N., Piggot, A. M. et al.: Species-specific responses to climate change and community composition determine future calcification rates of Florida Keys reefs. Glob. Change Biol., 13481,
- 670 doi:10.1111/gcb.13481, 2016.
 - Raven, J. A., Beardall, J., and Giordano, M.: Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms. Photosynthesis Res., 121, 111–124, 2014.
 - Schoepf, V., Grottoli, A. G., Warner, M. E., Cai, W.-J., Melman, T. F., Hoadley, K. D. et al.: Coral energy reserves and calcification in a high-CO₂ world at two temperatures.
- 675 PLoS One, 8, e75049. doi:10.1371/journal.pone.0075049, 2013.
 - Schoepf, V., Hu, X., Holcomb, M., Cai, W.-J., Li, Q., Wang, Y., et al.: Coral calcification under environmental change: a direct comparison of the alkalinity anomaly and buoyant weight techniques. Coral Reefs, doi:10.1007/s00338-016-1507-z, 2016.
 - Shaw, E. C., McNeil, B. I., and Tilbrook, B.: Impacts of ocean acidification in naturally
- variable coral reef flat ecosystems. J. Geophys. Res., 117, C03038,
 doi:10.1029/2011JC007655, 2012.

Shaw, E. C., Phinn, S. R., Tilbrook, B., and Steven, A.: Natural in situ relationships suggest coral reef calcium carbonate production will decline with ocean acidification. Limnol. Oceanogr., 60, 777–788, 2015.

- 685 Schneider, K., and Erez, J.: The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral *Acropora eurystoma*. Limnol. Oceanogr., 51, 1284–1293, 2006.
 - Stambler, N.: Zooxanthellae: the yellow symbionts inside animals. In Coral Reefs: An Ecosystem in Transition, pp. 87–106. Ed. by Z. Dubinsky, and N. Stambler. Springer,

690 Berlin, Germany, 2011.

Suggett, D. J., Dong, L. F., Lawson, T., Lawrenz, E., Torres, L., and Smith, D. J.: Light availability determines susceptibility of reef building corals to ocean acidification. Coral Reefs, 32, 327–337, 2013.

Washburn, L.: MCR LTER: coral reef: ocean currents and biogeochemitsry: salinity,

695 temperature and current at CTD and ADCP mooring FOR05 from 2005 ongoing. Knblter-mcr.30.30, 2015.

Table 1: Mean carbonate chemistry and temperature treatments in the flumes during the experiments conducted with back reef communities in Moorea and Oahu, and the fore reef community in Moorea. The mean \pm SE partial pressure of CO₂ (pCO₂), and the saturation states of aragonite (Ω_{arag}) were calculated from pH_T, total alkalinity (A_T), salinity (S) and temperature (T). SE for salinity was < 0.1.

Experiment	Treatment	рН _Т	A_{T}	pCO ₂	CT	$\Omega_{ m arag}$	S	Т
Moorea	Ambient	8.01	2339	453	2025	3.52	35.9	26.9
Back reef		± 0.02	± 2	± 30	± 9	± 0.09		± 0.1
	OA	7.61	2344	1317	2230	1.64	35.9	27.0
		± 0.01	± 1	± 50	± 7	± 0.06		± 0.1
Oahu	Ambient	7.96	2160	490	1936	2.59	33.4	23.9
Back reef		± 0.01	± 4	± 23	± 8	± 0.06		± 0.2
	OA	7.62	2164	1233	2074	1.36	33.4	23.9
		± 0.02	± 4	± 76	± 12	± 0.10		± 0.2
Moorea	Ambient	8.04	2329	400	1992	3.71	36.5	27.1
Fore reef		± 0.01	± 2	± 14	± 8	± 0.08		± 0.1
	OA	7.65	2330	1176	2198	1.75	36.5	27.0
		± 0.01	± 2	± 37	± 6	± 0.05		± 0.1

Table 2: Results of the t-tests used to compare between pCO₂ treatments the parameters of the hyperbolic tangent functions describing the relationship between community net photosynthesis (P_{net}) and PAR and net calcification (G_{net}) and PAR. Parameters of the hyperbolic function are the maximum rate ($P_{net max}$ and $G_{net max}$), the slope of the initial portion of the relationship (α), and the intercept (C_0).

Parameter	Experiment	Function parameter	<i>p</i> -value
Net Photosynthesis	Moorea – Back reef	P _{net max}	0.558
$(P_{\rm net})$		α	0.387
		C_{0}	0.559
	Oahu – Back reef	P _{net max}	0.840
		α	0.536
		C_0	0.621
	Moorea – Fore reef	P _{net max}	0.942
		α	0.792
		C_{0}	0.579
Net Calcification	Moorea – Back reef	G _{net max}	0.376
(G_{net})		α	0.836
		C_{0}	0.046
	Oahu – Back reef	P _{net max}	0.867
		α	0.126
		C_{0}	0.394
	Moorea – Fore reef	P _{net max}	0.736
		α	0.715
		$C_{ heta}$	0.002

Table 3: Results of ANCOVA analyses testing for effects of pCO₂ on slopes and

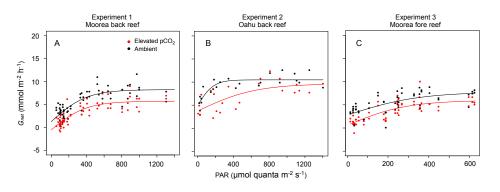
elevation of the P_{net} - G_{net} relationships. Results are shown for the experiments with back

reef communities in Moorea and Oahu, and the fore reef communities in Moorea.


Experiment	Parameter	SS	F-value	P-value
Moorea - back reef	Slope	0.50	$F_{1,92} = 0.10$	0.749
	Elevation	100.48	$F_{1,92} = 20.49$	< 0.001
Oahu - back reef	Slope	6.10	$F_{1,74} = 1.15$	0.286
	Elevation	66.40	$F_{1,74} = 12.57$	< 0.001
Moorea - fore reef	Slope	0.83	$F_{1,62} = 0.24$	0.623
	Elevation	36.39	$F_{1,62} = 10.61$	0.002

Fig. 1. Relationships of net primary production (P_{net}) with PAR in three coral reef communities representing the back reef of Moorea (A), the back reef of Oahu (B), and the fore reef of Moorea (C). Communities were incubated under ambient pCO₂ (~400 µatm, black symbols and lines) and elevated pCO₂ (~1200 µatm, red symbols and lines).

 μ μatm, black symbols and lines) and elevated pCO₂ (~1200 μatm, red symbols and lines) The curves represent the best fit of a hyperbolic tangent function for the relationship between *P_{net}* with PAR.



730

Fig. 2. Relationships of net calcification (G_{net}) with PAR in three coral reef communities representing the back reef of Moorea (A), the back reef of Oahu (B), and the fore reef of Moorea (C). Communities were incubated under ambient pCO₂ (~400 µatm, black symbols and lines) and elevated pCO₂ (~1200 µatm, red symbols and lines). The curves represent the best fit of a hyperbolic tangent function for the relationship between G_{net}

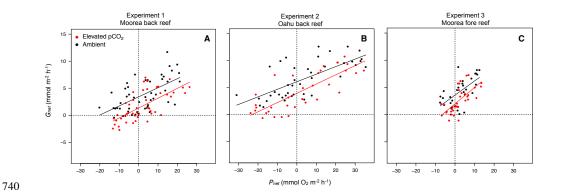

and PAR.

Fig. 3. Variations in G_{net} as a function of P_{net} in the three study sites: (A) Moorea back reef, (B) Oahu back reef, and (C) Moorea fore reef. Relationships were determined under control pCO₂ (400 µatm, black points and lines) and elevated pCO₂ (~1200 µatm, red points and lines). For the three communities and the two pCO₂ levels the slopes of the linear relationships between P_{net} and G_{net} were significant.

